GPU-Acceleration of Plasma Turbulence Simulations for Fusion Energy

by J. Candy¹, I. Sfiligoi¹, E. Belli¹, N. Howard², C. Holland³ ¹General Atomics, San Diego, CA ²MIT, Cambridge, MA ³UCSD, San Diego CA

Presented at SC18/NVIDIA Dallas, TX 11-16 Nov 2018

1 General Atomics (GA) is a private contractor in San Diego

General Atomics (GA) is a private contractor in San Diego
 The GA Magnetic Fusion division does DOE-funded research

Background and Motivation

1 General Atomics (GA) is a private contractor in San Diego

- **2** The GA Magnetic Fusion division does DOE-funded research
- **③** Hosts **DIII-D** National Fusion Facility

Background and Motivation

1 General Atomics (GA) is a private contractor in San Diego

- **2** The GA Magnetic Fusion division does DOE-funded research
- **③** Hosts **DIII-D National Fusion Facility**

ITHIS TALK: GPU-based plasma turbulence simulation using gyrokinetic model

J				
~				
J				
~				
J				
Documentary Video (for GYRO)				
www.youtube.com/watch?v=RLI6QW2x4Lg				

ITER Facility (35 nations) under construction in France GOAL: Simulate turbulent plasma in core (magenta) region

Why such a large facility?

Tokamak confinement improves with LARGE PLASMA VOLUME

GENERAL ATOMICS

Plasma theory in closed fieldline region well-understood

Helical field perfectly confines plasma (almost)

There is a small amount of radial energy/particle loss

- Collisions (1970s): Γ_{collision}
- Turbulence (1980s): Γ_{turbulence}
- Both exhibit gyroBohm scaling

```
flux \Gamma \sim v(\rho/a)^2
```

confinement time $\tau = \frac{a}{\Gamma} \sim$

$$\frac{a^3}{v\rho^2}$$

- *a* = torus radius
- $\rho = particle orbit size$
- *v* = particle velocity

CGYRO computes the turbulent flux DIII-D Tokamak at General Atomics in San Diego, CA

CGYRO computes the turbulent flux DIII-D Tokamak at General Atomics in San Diego, CA

NCCS TITAN (Oak Ridge, TN) – K20x

NCCS TITAN (Oak Ridge, TN) – K20x

CSCS PIZ DAINT (Lugano, Switzerland) – P100

CSCS PIZ DAINT (Lugano, Switzerland) – P100

General Atomics Power9 (San Diego, CA) – V100

General Atomics Power9 (San Diego, CA) – V100

General Atomics Power9 (San Diego, CA) – V100

History of Energy Research at GA

General Atomics – June 25th, 1959

Gyrokinetic equation for plasma species *a* Typically: *a* = (deuterium, carbon, electron)

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X \widetilde{h}_{a} - i(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}) \widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \mathcal{C}_{a}$$

Symbol definitions

particles
$$\widetilde{H}_a = \widetilde{h}_a + \frac{z_a T_e}{T_a} \widetilde{\Psi}_a$$

Gyrokinetic equation for plasma species *a* Typically: *a* = (deuterium, carbon, electron)

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X \widetilde{h}_{a} - i(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}) \widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = C_{a}$$

Symbol definitions

$$\begin{split} \mathbf{particles} & \widetilde{H}_{a} = \widetilde{h}_{a} + \frac{z_{a}T_{e}}{T_{a}}\widetilde{\Psi}_{a} \\ \mathbf{fields} & \widetilde{\Psi}_{a} = J_{0}(\gamma_{a})\left(\delta\widetilde{\Phi} - \frac{v_{\parallel}}{c}\delta\widetilde{A}_{\parallel}\right) + \frac{v_{\perp}^{2}}{\Omega_{ca}c}\frac{J_{1}(\gamma_{a})}{\gamma_{a}}\delta\widetilde{B}_{\parallel} \end{split}$$

Electromagnetic GK-Maxwell Equations

Coupling to fields is a MAJOR complication!

$$\begin{pmatrix} k_{\perp}^{2}\lambda_{D}^{2} + \sum_{a} z_{a}^{2} \frac{T_{e}}{T_{a}} \int d^{3}v \frac{f_{0a}}{n_{e}} \end{pmatrix} \delta \widetilde{\Phi} = \sum_{a} z_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} J_{0}(\gamma_{a}) \widetilde{H}_{a}$$

$$\frac{2}{\beta_{e,\text{unit}}} k_{\perp}^{2} \rho_{s}^{2} \delta \widetilde{A}_{\parallel} = \sum_{a} z_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} \frac{v_{\parallel}}{c_{s}} J_{0}(\gamma_{a}) \widetilde{H}_{a}$$

$$- \frac{2}{\beta_{e,\text{unit}}} \frac{B}{B_{\text{unit}}} \delta \widetilde{B}_{\parallel} = \sum_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} \frac{m_{a}v_{\perp}^{2}}{T_{e}} \frac{J_{1}(\gamma_{a})}{\gamma_{a}} \widetilde{H}_{a}$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i \Omega_{s} X \widetilde{h}_{a} - i (\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}) \widetilde{H}_{a} - i \Omega_{*} \widetilde{\Psi}_{a} + \Omega_{\rm NL} (\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \mathcal{C}_{a}$$

 $E \times B$ flow

$$-i\Omega_s = -irac{k_{ extsf{ heta}}L}{2\pi}rac{a}{c_s}\gamma_E$$

\$acc parallel loop

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s} X \widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right) \widetilde{H}_{a} - i\Omega_{*} \widetilde{\Psi}_{a} + \Omega_{\mathrm{NL}}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \mathfrak{C}_{a}$$

Streaming

$$-i\Omega_{ heta} = rac{v_{\parallel}}{\mathrm{w}_s}rac{\partial}{\partial heta}$$

\$acc parallel loop

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{\mathrm{NL}}(\widetilde{h}_{a},\widetilde{\Psi}_{a}) = \mathfrak{C}_{a}$$

Trapping

$$-i\Omega_{\xi} = -\frac{v_{ta}}{w_s} \frac{u_a}{\sqrt{2}} \left(1 - \xi^2\right) \frac{\partial \ln B}{\partial \theta} \frac{\partial}{\partial \xi} \\ -\frac{1}{2u_a} \frac{\partial \lambda_a}{\partial \theta} \left[\frac{v_{\parallel}}{w_s} \frac{\partial}{\partial u_a} + \frac{\sqrt{2}v_{ta}}{w_s} \left(1 - \xi^2\right) \frac{\partial}{\partial \xi}\right]$$

Fold into collision operator

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s} X \widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right) \widetilde{H}_{a} - i\Omega_{*} \widetilde{\Psi}_{a} + \Omega_{\mathrm{NL}}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \mathfrak{C}_{a}$$

Drift motion

$$-i\Omega_{\rm d} = a \frac{v_{ta}}{c_s} \mathbf{b} \times \left[u_a^2 \left(1 + \xi^2 \right) \frac{\nabla B}{B} + u_a^2 \xi^2 \frac{8\pi}{B^2} \left(\nabla p \right)_{\rm eff} \right] \cdot i \mathbf{k}_\perp \rho_a$$
$$+ M_a \frac{2av_{\parallel}}{c_s R_0} \mathbf{b} \times \left(\frac{R}{\partial_\psi B} \frac{\partial R}{\partial \theta} \nabla \varphi - \frac{B_t}{B} \nabla R \right) \cdot i \mathbf{k}_\perp \rho_a$$
$$+ \frac{a}{c_s} \mathbf{b} \times \left(-\frac{v_{ta}}{T_a} \mathbf{F}_c + \frac{c}{B} \nabla \Phi_* \right) \cdot i \mathbf{k}_\perp \rho_a$$

Fold into streaming (diagonal)

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\frac{\Omega_{*}\widetilde{\Psi}_{a}}{\Omega_{*}\widetilde{\Psi}_{a}} + \Omega_{\mathrm{NL}}(\widetilde{h}_{a},\widetilde{\Psi}_{a}) = \mathcal{C}_{a}$$

Gradient drive

$$-i\Omega_* = \left[\frac{a}{L_{na}} + \frac{a}{L_{Ta}}\left(u_a^2 - \frac{3}{2}\right) + \gamma_p v_{\parallel} \frac{a}{v_{ta}^2} \frac{RB_t}{R_0 B}\right] ik_{\theta} \rho_s$$
$$+ \left\{\frac{a}{L_{Ta}}\left[\frac{z_a e}{T_a} \Phi_* - \frac{M_a^2}{2R_0^2} \left(R^2 - R(\theta_0)^2\right)\right] + M_a^2 \frac{aR(\theta_0)}{R_0^2} \frac{dR(\theta_0)}{dr} + M_a \gamma_p \frac{a}{v_{ta}R_0^2} \left(R^2 - R(\theta_0)^2\right)\right\} ik_{\theta} \rho_s$$

Fold into streaming (diagonal)

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s} X \widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right) \widetilde{H}_{a} - i\Omega_{*} \widetilde{\Psi}_{a} + \left|\Omega_{\mathrm{NL}}(\widetilde{h}_{a}, \widetilde{\Psi}_{a})\right| = \mathfrak{C}_{a}$$

Nonlinearity

$$\Omega_{\rm NL}(\tilde{h}_a, \tilde{\Psi}_a) = \frac{ac_s}{\Omega_{cD}} \sum_{\mathbf{k}_{\perp}' + \mathbf{k}_{\perp}'' = \mathbf{k}_{\perp}} \left(\mathbf{b} \cdot \mathbf{k}_{\perp}' \times \mathbf{k}_{\perp}'' \right) \widetilde{\Psi}_a(\mathbf{k}_{\perp}') \widetilde{h}_a(\mathbf{k}_{\perp}'')$$
cuFFT

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{\mathrm{NL}}(\widetilde{h}_{a},\widetilde{\Psi}_{a}) = \mathbf{C}_{a}$$

Cross-species collision operator

$$C_{a} = \sum_{b} C_{ab}^{L} \left(\widetilde{H}_{a}, \widetilde{H}_{b} \right)$$

$$C_{ab}^{L} \left(\widetilde{H}_{a}, \widetilde{H}_{b} \right) = \frac{\nu_{ab}^{D}}{2} \frac{\partial}{\partial \xi} \left(1 - \xi^{2} \right) \frac{\partial \widetilde{H}_{a}}{\partial \xi} + \frac{1}{\nu^{2}} \frac{\partial}{\partial \nu} \left[\frac{\nu_{ab}^{\parallel}}{2} \left(\nu^{4} \frac{\partial \widetilde{H}_{a}}{\partial \nu} + \frac{m_{a}}{T_{b}} \nu^{5} \widetilde{H}_{a} \right) \right]$$

$$- \widetilde{H}_{a} k_{\perp}^{2} \rho_{a}^{2} \frac{\nu^{2}}{4 v_{ta}^{2}} \left[\nu_{ab}^{D} \left(1 + \xi^{2} \right) + \nu_{ab}^{\parallel} \left(1 - \xi^{2} \right) \right] + R_{\text{mom}} (\widetilde{H}_{b}) + R_{\text{ene}} (\widetilde{H}_{b})$$

\$acc parallel loop

Sonic Transport Fluxes

These are inputs to an independent TRANSPORT CODE

particle flux
$$\Gamma_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3 v \, \widetilde{H}_a^* c_{1a} \widetilde{\Psi}_a \right\rangle$$

energy flux $Q_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3 v \, \widetilde{H}_a^* c_{2a} \widetilde{\Psi}_a \right\rangle$
momentum flux $\Pi_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3 v \, \widetilde{H}_a^* c_{3a} \widetilde{\Psi}_a \right\rangle$

What do we solve for

5-dimensional distribution for every plasma species

Six-dimensional array (mapped into internal 2D array in CGYRO)

The **spatial coordinates** are

 $k_x \longrightarrow$ radial wavenumbers $k_y \longrightarrow$ binormal wavenumbers $\theta \longrightarrow$ field-line coordinate

The **velocity-space** coordinates are

$$\begin{split} \xi = v_{\parallel}/v &\longrightarrow \text{cosine of the pitch angle} \in [-1,1] \\ v &\longrightarrow \text{speed} \in [0,\infty] \;. \end{split}$$

Visual representation of computational mesh

CGYRO optimized for challenging multiscale turbulence COMPLETE REDESIGN of world-renowned GYRO code

Candy/SC18/Nov 2018

Simulation underway on Titan (NCCS) 4986 nodes = 4986 Tesla K20X GPUs

Candy/SC18/Nov 2018

IERAL ATOMICS

• Huge thanks to Craig Tierney and Brent Leback for guidance!

- Huge thanks to Craig Tierney and Brent Leback for guidance!
- CGYRO design anticipated aggressive thread/GPU utilization
 - 1 Huge nonlinear convolution (Poisson bracket) via FFT
 - 2 Large nested loops remain after MPI distribution

- Huge thanks to Craig Tierney and Brent Leback for guidance!
- CGYRO design anticipated aggressive thread/GPU utilization
 - 1 Huge nonlinear convolution (Poisson bracket) via FFT
 - 2 Large nested loops remain after MPI distribution
- Took full advantage of GPUs with minimal changes to code logic
 - 1 Existing FFTW code was ported directly to **cuFFT**
 - 2 Nested loops accelerated by **OpenACC** without restructuring or invasive changes
 - **③** Implemented **GPU-aware MPI** (utilizes GPUDirect and GPU-Infiniband RDMA)

Kernel	Data dependence	Dominant operation	GPU approach
str	$k_x, \theta, [k_y]_2, [\xi, v, a]_1$	loop	OpenACC
field	Same as str	loop	OpenACC
coll	$[k_x, \theta]_1, [k_y]_2, \xi, v, a$	mat-vec multiply	OpenACC
nl	$k_x, k_y, [\theta, [\xi, \mathbf{v}, a]_1]_2$	FFT	CUFFT

2x Power9 + 4x V100

Scaling: CGYRO nl01 (individual kernels)

V100-GPU Performance improvement over time

2x Power9 + 4x V100

Scaling: CGYRO nl01 (individual kernels)

V100-GPU Performance improvement over time

2x Power9 + 4x V100

Scaling: CGYRO nl01

GPU versus Skylake and KNL

Scaling: CGYRO n103 – much larger case

Skylake versus 3 different GPUs

Scaling: CGYRO n103 – much larger case

Skylake versus 3 different GPUs

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or those of the European Commission.

