Neural-network accelerated core-pedestal coupled simulations, and applications to ITER

O.Meneghini¹, G. Snoep², J. McClenaghan¹, B.C. Lyons¹, B. Grierson³, C. S. Imai⁴, J. Candy¹, E. Belli¹, P.B. Snyder¹, G.M. Staebler¹, S.P. Smith¹, J.M Park⁵, S. Mordijck⁶

¹ General Atomics, San Diego
 ² TUE, Eindhoven Netherlands
 ³ PPPL, Princeton
 ⁴ University of California, San Diego
 ⁵ Oak Ridge National Laboratory, Oak Ridge
 ⁶ College of William and Mary, Williamsburg

Transport Task Force March 18-21, 2019

Past core-pedestal coupled simulations developed within OMFIT assumed impurity profile to be know

O. Meneghini et al. NF 2017:

- Iterative workflow to couple core-pedestal solutions
- Speedup process by millions with neural networks
- Robustly finds self-consistent solution without pedestal height/width as free parameters
- ...**BUT:** Z_{eff} profile was assumed to be know

In this work, we lift this assumption, an **allow for self-consistent transport of impurities**

Developed workflow for coupled core-pedestal simulations with self-consistent transport of impurities

- Three nested self-consistency loops
 - core profiles + pedestal + impurities + equilibrium & sources
- Used NN models to speedup the most critical bottlenecks
- Compatible with ITER IMAS data structure (leveraging OMAS)

Used neural network models EPED1-NN and TGLF-NN to speedup the most critical bottlenecks in the workflow

- EPED1 pedestal model \sim 20 CPU/h \rightarrow EPED1-NN \sim ms
 - EPED1-NN pedestal coupling moved within core-profiles calculation
- TGLF transport model called 1000 \times \sim 10 CPU/s \rightarrow TGLF-NN \sim ms
 - TGLF-NN embedded as part of orginal TGLF code

Neural-network accelerated core-pedestal coupled simulations, and applications to ITER

1 EPED-NN and TGLF-NN models

- 2 STEP workflow for core-pedestal predictive simulations with transport of impurities
- 3 Theory-based machine confinement scaling

4 Conclusions

OMFIT provides a convenient environment to support machine learning applications

OMFIT module 'BRAINFUSE' gathers data, trains, tests and deploys neural network for multiple applications

Three main domains:

1 Pedestal

- EPED1-NN
- RMPED-NN
- 2 Transport fluxes
- 3 Bootstrap current - NEOjbs-NN

- Regularization to avoid over-training
- Ensemble of NNs used to estimate the error in NN models prediction
 - random NN initialization
 - each NN trained on a subset of the training DB (k-fold)

EPED1-NN to predict pedestal structure for H and Super-H mode plasma regimes

Trained to reproduce results of IPS-EPED1 model

10 input parameters to predict 12 outputs:

- 1 normal H mode solution
- 2 Super-H mode solution

H and Super-H set to be equal when there is only one root

Extended NN model so that each root is evaluated for 3 different diamagnetic stabilization models:

G $\gamma/\omega_A > 0.03$ H $\gamma/(\omega^*/2) > 1$ GH $\gamma^2/(\omega_A \omega^*/2) > 0.03$

EPED1-NN model closely reproduces EPED1 predictions Trained across input parameter range of multiple devices

Built database of ~20,000 EPED1 runs (2 million CPU hours) DIII-D: 3,000 runs KSTAR: 700 runs JET: 200 runs ITER: 15,000 runs CFETR: 1,200 runs

Same EPED1 runs reprocessed with different diamagnetic stabilization rules

 $imes 10^9$ speedup

O. Meneghini - TTF Meeting - March 18-21, 2019

TGLF-NN predicts core turbulent fluxes

Trained to reproduce results of **TGLF** model NOTE: TGLF is itself a reduced model of gyrokinetic simulations

For 2 ion species plasma (eg. Deuterium & Carbon for DIII-D):

- 23 dimensionless input parameters
- to predict 6 gyro-Bohm fluxes Q_e , Q_i , Γ_e , Γ_D , Γ_C , Π_i

+2 inputs and +1 output for every additional ion species:

• 25 inputs, 7 outputs for DT, He4, Ne plasma (eg. ITER)

TGLF-NN model closely reproduces TGLF predictions

Training data generated making random variations around points of interest

DIII-D: 1M runs ITER: 500k runs

- 1 EPED-NN and TGLF-NN models
- 2 STEP workflow for core-pedestal predictive simulations with transport of impurities
- 3 Theory-based machine confinement scaling
- 4 Conclusions

Self-consistent impurity transport done with STRAHL

STRAHL is a 1D impurity transport code:

- IN Influx of neutral species (rate and energy)
- IN Transport coefficients
- IN Background plasma density and temperature
- OUT Profiles for each ionized state of the impurity

For the purpose of core impurity transport we are not focusing on physics of the divertor chamber in STRAHL

- Set artificially short SOL/divertor/pump confinement times for simulations to reach steady-state fast
- Neutrals source scaled to match Z_{eff} at one radial location, or total plasma impurity particle content
- STRAHL uses a diffusive and convective transport ansatz:

$$\Gamma_I = -D \, \frac{\partial n_I}{\partial r} + v \, n_I$$

Diffusion and convection coefficients for impurity transport CORE region:

In the core D and v can be calculated from TGLF(-NN) and NEO fluxes:

$$D = \frac{\Gamma_1 n_2 - \Gamma_2 n_1}{n'_2 n_1 - n'_1 n_2} \qquad v = \frac{\Gamma_1 n'_2 - \Gamma_2 n'_1}{n'_2 n_1 - n'_1 n_2}$$

Diffusion and convection coefficients for impurity transport AXIS region:

Near the axis impurity particle source is zero, thus in stationary regime:

$$\frac{\partial n_I}{\partial r}\frac{1}{n_I} = \frac{v}{D}$$

- Fix $D_{axis} = D|_{\rho=0.2}$
- Set v_{axis} such that v_{axis}/D_{axis} linearly goes to zero at ho=0

Diffusion and convection coefficients for impurity transport PEDESTAL region:

Alignment of impurity, main ion and electron density profiles (ie. flat Z_{eff}) is a reasonable physical constraint for the pedestal region

- Fix $D_{axis} = D|_{\rho=0.8}$
- Initial guess $v_{ped} = rac{\partial n_e}{\partial r} rac{1}{n_e} D_{ped}$ (inexact because sources are not zero)

ERAL ATOMICS

• Iteratively run STRAHL and find v_{ped} so that $Z_{ped}=Z|_{
ho=0.8}$

Benchmark case: DIII-D H-mode discharge 168830

O. Meneghini - TTF Meeting - March 18-21, 2019

Predictions for varying carbon content (0.5, 1.0, 1.5) shows how impurity seeding can improve pedestal

seneral atomics

Initial ITER simulations show small dependency of Q on Z_{eff} : increased Z_{eff} benefits pedestal but adds to core dilution

O. Meneghini - TTF Meeting - March 18-21, 2019

Neural-network accelerated core-pedestal coupled simulations, and applications to ITER

- 1 EPED-NN and TGLF-NN models
- 2 STEP workflow for core-pedestal predictive simulations with transport of impurities
- 3 Theory-based machine confinement scaling

4 Conclusions

Minimal theory predictive model 0D \rightarrow 1D profiles by assuming known functional form

- **Pedestal profiles** from EPED-NN prediction
- Core profiles from TGLF(-NN) prediction at one radial location
 - T_e (r=0), T_i (r=0) iterated until flux matched at r/a=0.6
- Equilibrium and sources based on input global parameters
 - R, a, B_T, I_p, n_{e,ped}, P_{aux}, κ , δ , q₀, Z_{eff}

Minimal theory predictive model 0D \rightarrow 1D profiles by assuming known functional form

- **Pedestal profiles** from EPED-NN prediction
- Core profiles from TGLF(-NN) prediction at one radial location
 - T_e (r=0), T_i (r=0) iterated until flux matched at r/a=0.6
- Equilibrium and sources based on input global parameters

- R, a,
$$B_T$$
, I_p , $n_{e,ped}$, P_{aux} , κ , δ , q_0 , Z_{eff}

Minimal theory predictive model 0D \rightarrow 1D profiles by assuming known functional form

- **Pedestal profiles** from EPED-NN prediction
- Core profiles from TGLF(-NN) prediction at one radial location
 - T_e (r=0), T_i (r=0) iterated until flux matched at r/a=0.6
- Equilibrium and sources based on input global parameters
 - R, a, B_T, I_p, n_{e,ped}, P_{aux}, κ , δ , q₀, Z_{eff}

Applied model for theory-based confinement scaling Showing good agreement with ITPA experimental database

ITER prediction of theory-based model is slightly more pessimistic than $\tau_{98,y2}$ power law scaling

J.McClenaghan APS 2018

• Zero rotation and D-C TGLF-NN also more to pessimistic

Neural-network accelerated core-pedestal coupled simulations, and applications to ITER

- 1 EPED-NN and TGLF-NN models
- 2 STEP workflow for core-pedestal predictive simulations with transport of impurities
- 3 Theory-based machine confinement scaling
- 4 Conclusions

EPED-NN and TGLF-NN accelerated models enable rapid core-pedestal coupled predictions, both applied to ITER

Predictive simulations with self-consistent transport of impurities

- STEP module in OMFIT, which leverages OMAS to combine codes (*"steps*") in arbitrary workflows
- Novel coupling strategy for impurity transport

2 Machine confinement scaling with minimal theory-based model

- Good agreement with ITPA experimental database

Going forward:

- Apply higher fidelity predictive workflow to ITPA database
- Improve minimal theory-based predictive model to include rotation and DT-He4-Ne

