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Who is General Atomics?
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Who is General Atomics?

1 General Atomics (GA) is a private contractor in San Diego

2 The GA Magnetic Fusion division does DOE-funded research
3 Hosts DIII-D National Fusion Facility
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Founded on July 18, 1955 (photo 1957)
The General Atomic Division of General Dynamics
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Laboratory formally dedicated on June 25th, 1959
John Jay Hopkins Laboratory for Pure and Applied Science
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Present-day Campus (2019)
Retains feel of early architecture
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Doublet III (1974)
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DIII-D (Present day)
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The case for fusion energy
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Energy Use by Technology and Year
energy.mit.edu/news/limiting-global-warming-aggressive-measures-needed
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Surface Temperature Anomaly
energy.mit.edu/news/limiting-global-warming-aggressive-measures-needed
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Plasma theory in closed fieldline region well-understood
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Helical field perfectly confines plasma (almost)
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There is a small amount of radial energy/particle loss

• Collisions (1970s): Γcollision

• Turbulence (1980s): Γturbulence

• Both exhibit gyroBohm scaling

flux Γ ∼ v(ρ/a)2

confinement time τ =
a
Γ
∼

a3

vρ2

• a = torus radius
• ρ = particle orbit size
• v = particle velocity
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Tokamak physics spans multiple space/timescales
Core-edge-SOL (CESOL) region coupling

Ψ

P
ro

fi
le

Core Edge SOL

CESOL
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Tokamak confinement improves with LARGE PLASMA VOLUME
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ITER Facility (35 nations) under construction in France
GOAL: Simulate turbulent plasma in core (magenta) region
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Mathematical formulation and GPU-based numerical solution
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Gyrokinetic Theory for Magnetized Plasma
The Cooper/Kripke Inversion

27 Candy/GTC/March 2019/S9202



Gyrokinetic equation for plasma species a
Typically: a = (deuterium, carbon, electron)

∂h̃a

∂τ
− iΩsX h̃a − i (Ωθ +Ωξ +Ωd) H̃a − iΩ∗ Ψ̃a +ΩNL( h̃a , Ψ̃a ) = Ca

Symbol definitions

particles H̃a = h̃a +
zaTe

Ta
Ψ̃a

fields Ψ̃a = J0(γa)

(
δφ̃−

v‖
c
δÃ‖

)
+

v2
⊥

Ωcac
J1(γa)

γa
δB̃‖
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Electromagnetic GK-Maxwell Equations
Coupling to fields is a MAJOR complication!

(
k2
⊥λ

2
D +
∑

a

z2
a

Te

Ta

∫
d3v

f0a

ne

)
δφ̃ =

∑
a

za

∫
d3v

f0a

ne
J0(γa) H̃a

2
βe,unit

k2
⊥ρ

2
s δÃ‖ =

∑
a

za

∫
d3v

f0a

ne

v‖
cs

J0(γa) H̃a

−
2

βe,unit

B
Bunit

δB̃‖ =
∑

a

∫
d3v

f0a

ne

mav2
⊥

Te

J1 (γa)

γa
H̃a
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− i ΩsX h̃a − i (Ωθ +Ωξ +Ωd) H̃a − iΩ∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

E×B flow

−iΩs = −i
kθL
2π

a
cs
γE
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i

(
Ωθ +Ωξ +Ωd

)
H̃a − iΩ∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

Streaming

−iΩθ =
v‖
ws

∂

∂θ
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i

(
Ωθ + Ωξ +Ωd

)
H̃a − iΩ∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

Trapping

−iΩξ = −
vta

ws

ua√
2

(
1 − ξ2) ∂ ln B

∂θ

∂

∂ξ

−
1

2ua

∂λa

∂θ

[
v‖
ws

∂

∂ua
+

√
2vta

ws

(
1 − ξ2) ∂

∂ξ

]
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i

(
Ωθ +Ωξ + Ωd

)
H̃a − iΩ∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

Drift motion

−iΩd = a
vta

cs
b×

[
u2

a
(
1 + ξ2) ∇B

B
+ u2

aξ
2 8π

B2 (∇p)eff

]
· ik⊥ρa

+ Ma
2av‖
csR0

b×
(

R
JψB

∂R
∂θ
∇ϕ−

Bt

B
∇R
)
· ik⊥ρa

+
a
cs

b×
(
−

vta

Ta
Fc +

c
B
∇Φ∗

)
· ik⊥ρa
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i (Ωθ +Ωξ +Ωd) H̃a − i Ω∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

Gradient drive

−iΩ∗ =
[

a
Lna

+
a

LTa

(
u2

a −
3
2

)
+ γpv‖

a
v2

ta

RBt

R0B

]
ikθρs

+

{
a

LTa

[
zae
Ta
Φ∗ −

M2
a

2R2
0

(
R2 − R(θ0)

2)]
+M2

a
aR(θ0)

R2
0

dR(θ0)

dr
+ Maγp

a
vtaR2

0

(
R2 − R(θ0)

2)} ikθρs

35 Candy/GTC/March 2019/S9202



Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i (Ωθ +Ωξ +Ωd) H̃a − iΩ∗Ψ̃a + ΩNL(h̃a, Ψ̃a) = Ca

Nonlinearity

ΩNL(h̃a, Ψ̃a) =
acs

ΩcD

∑
k′⊥+k′′⊥=k⊥

(
b · k′⊥ × k′′⊥

)
Ψ̃a(k′⊥)h̃a(k′′⊥)
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Gyrokinetic equation for plasma species a
Typically, deuterium, some carbon, and electrons

∂h̃a

∂τ
− iΩsX h̃a − i (Ωθ +Ωξ +Ωd) H̃a − iΩ∗Ψ̃a +ΩNL(h̃a, Ψ̃a) = Ca

Cross-species collision operator

Ca =
∑

b

CL
ab

(
H̃a, H̃b

)

CL
ab(H̃a, H̃b) =

νD
ab
2
∂

∂ξ

(
1 − ξ2) ∂H̃a

∂ξ
+

1
v2
∂

∂v

[
ν
‖
ab
2

(
v4∂H̃a

∂v
+

ma

Tb
v5H̃a

)]

−H̃ak2
⊥ρ

2
a

v2

4v2
ta

[
νD

ab
(
1 + ξ2)+ ν‖ab

(
1 − ξ2)]+ Rmom(H̃b) + Rene(H̃b)
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Sonic Transport Fluxes
These are inputs to an independent TRANSPORT CODE

particle flux Γa =
∑
k⊥

〈∫
d3v H̃∗a c1aΨ̃a

〉

energy flux Qa =
∑
k⊥

〈∫
d3v H̃∗a c2aΨ̃a

〉

momentum flux Πa =
∑
k⊥

〈∫
d3v H̃∗a c3aΨ̃a

〉
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What do we solve for
5-dimensional distribution for every plasma species

Six-dimensional array (mapped into internal 2D array in CGYRO)

Ha(kx, ky, θ, ξ, v︸           ︷︷           ︸
5D mesh

, t)

The spatial coordinates are

kx −→ radial wavenumbers
ky −→ binormal wavenumbers
θ −→ field-line coordinate

The velocity-space coordinates are

ξ = v‖/v −→ cosine of the pitch angle ∈ [−1, 1]

v −→ speed ∈ [0,∞] .
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Visual representation of computational mesh
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CGYRO optimized for challenging multiscale turbulence
COMPLETE REDESIGN of world-renowned GYRO code
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Simulation of turbulent energy loss in a tokamak plasma
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CGYRO computes the turbulent flux
DIII-D Tokamak at General Atomics in San Diego, CA
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CGYRO computes the turbulent flux
DIII-D Tokamak at General Atomics in San Diego, CA
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Multiscale DIII-D Simulation at r/a = 0.92
ITER baseline discharge (Haskey, Grierson) 164988
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Resolution
kxρs 6 124.0 , kyρs 6 31.8

Time
9 hrs on 32K cores

Qi/QGB Qe/QGB
pwrbal 2.5 8.2
NEO 2.7 0.0

CGYRO 0.0 8.0
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Simulation underway on Titan (NCCS)
4986 nodes = 4986 Tesla K20X GPUs
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Important locations for CGYRO

Source code
github.com/gafusion/gacode

DOI
www.osti.gov/doecode/biblio/20298

User Documentation
gafusion.github.io/doc

Documentary Video (for GYRO)

www.youtube.com/watch?v=RLI6QW2x4Lg
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Fidelity Hierarchy (Pyramid)
Range of models all the way up to leadership codes

Leadership-class computing
highest �delity simulations

Calibrate

Reduced models for validation

Machine-learning models for
optimization & real-time control

Train

One-o� heroic simulation

Inform

Inform

Physics
Validation

Physics
Application

Physics
Development
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Create TGLF-NN neural net from TGLF reduced model

• 23 inputs→ 4 outputs
• Each dataset has 500K cases from 2300 multi-machine discharges
• Trained with TENSORFLOW
• Must be retrained as TGLF model is updated
• TGLF itself derived from HPC CGYRO simulation

ExB
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GPU performance: development and results
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CGYRO: Roadmap for efficient GPU implementation

1 Numerical algorithms selected to allow intensive threading/acceleration
− Nonlinearity (nl) = FFT
− Collisions (coll) = Matrix-vector multiply

2 Key kernels have threaded (default) and accelerated variations
− Smart loop order and good memory management keeps kernels similar

3 Implemented GPU-aware MPI (utilizes GPUDirect and GPU-Infiniband RDMA)
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Initial thought was that nonlinearity (nl) would dominate
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Acceleration of nl exposed cost of other kernels
Titan K20 GPU too small to store collision matrix
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CGYRO: Roadmap for efficient GPU implementation

!$acc loop seq

do ivp=1,nv

cvec_re = real(cvec(ivp))

cvec_im = aimag(cvec(ivp))

!$acc loop vector

do iv=1,nv

cval = cmat(iv,ivp,ic_loc)

bvec(iv) = bvec(iv) + cmplx(cval*cvec_re,cval*cvec_im)

enddo

enddo
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CGYRO: Roadmap for efficient GPU implementation

#ifdef DISABLE_GPUDIRECT_MPI

!$acc update host(fsendr)

#else

!$acc host_data use_device(fsendr,f)

#endif

call MPI_ALLTOALL(fsendr,nsend,MPI_DOUBLE_COMPLEX, &

f, nsend,MPI_DOUBLE_COMPLEX,lib_comm,ierr)

#ifdef DISABLE_GPUDIRECT_MPI

!$acc update device(f)

#else

!$acc end host_data

#endif
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Power9 (CPU) versus Power9 + 4X V100 (GPU)
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CPU systems versus 4X V100
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GPU type comparison
Stampede2, GA, Piz Daint, Titan
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Google Cloud Partition Comparison
Santa Fe (last week)
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Cloud V100 compared to Summit and Cori
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof, or those of the European Commission.
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