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Summary

Supporting and enhancing integration use cases

® Physics Motivation : To extend multi-code integrated
simulation of the core plasma to include the pedestal and

plasma edge regions.

® Approach:

o Modernize & modularize - update legacy (non-extensible) / mission-
critical capability to utilize HPC resources and extend via including HPC
capable component codes.

o Usability - templatizing IPS to enable dynamic construction from a GUI
(OMFit) and improve usability and adoption.

® Other example integration workflows :
o Recalibration of the TGLF turbulent transport model for ITER,

o Parareal - event driven parallel in time algorithm.
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Legacy Integrated Simulation

Risks loss of capability in the longer term

® Much of the existing mission critical use cases of integrated
simulation for fusion rely on legacy / non-extensible code

bases, e.g.,
o Device design and

o Scenario / shot development.

® Such single executable,
all-physics-in-one approaches
hinder advancing state of the art.

® Limits community contribution,
swapping components for
different fidelity options,
maintainability, etc ...

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR [JSE ONE LITILE
JGOTD‘H\ INSTEAD.

EH, SCREW GOOD PRACTICE.

HOW BAD CAN IT BE?
\ Goto main-sub3;

.

I : !?*CDHP[LE#
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A Modern, Modular Approach

The IPS framework + OMFit interface

e The basis for production scenario development simulation in
magnetically confined fusion is an equilibrium solver, plus slow
timescale transport solver with various source components ...

® A maintainable, extensible, and HPC capable tool that can be
contributed to by the community requires that these pieces be
modular.

® We provide a framework (IPS), communication method (file-
based at present), and a top-level transport solver for
community components.

e Usability is often overlooked in physics codes, leading to
reduced impact of advanced physics models in scenario
development simulation. By driving simulations through a
standard interface (OMFit) we are addressing this. %0k Rimce
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IPS : Framework Basics

Integrated Plasma Simulator

Python-based component framework. State Adapter

Components are python-wrapped

binaries.

Framework runs in a single batch allocation, manages

resources for components.

Framework

Framework Services

]

Physics App.

Physics App.

Component Adapter| |Component Adapj

State Adapter

]

¥

Plasma State

Components launch tasks on compute nodes using standard

system mechanisms,
l.e. mpiexec, aprun ...

“Plasma State” holds primary
data for exchange.

O “Reader-makes-right” model.

Head Node Compute Nodes
Message Queues —
—> Component 1 . .
Message Handlers [ ] i [ | .
- ) step ) ()
Finalize () ..
Framework [/ Component 2
T Init() ) O O
__|step() " O
Resource manager [ Finalize() O
Data Manager O O
Task Manager Component 3 O
Config. Manager T iﬁltg I:li:% J
Finali
Event Service [ R O O 8
[ Driver O O
Init()
Step{) " O O O
Finalize O




IPS : Component Architecture

What the framework provides ...

Framework Services Components

e Configuration manager. e Components characterized by ports

e Task manager (class) and implementation (instance).
o Launch underlying applications, o Allimplementations of a port are
o Blocking or non-blocking. expected to be fundamentally

equivalent in their interactions
® Resource manager ... with other components.

o Nodes allocated to batch job. : :
® Primary component interface ...

® Event service ...

o init()
o Asynchronous pub/sub events. o step()
e Data manager ... o finalize()
o File staging (per timestep), e Distinguished components ...
o Mediate concurrent access to state, o Driver
o Checkpoint/restart (framework level). _
o Monitor

e Monitoring via web portal.

;‘_.“,(\)AK RIDGE
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IPS : Multi-Level Parallelism
Maximal resource utilization via hierarchical concurrency

1. Individual “tasks” (physics executables) can be parallel.
2. Components can launch multiple tasks.

3. Multiple components can run concurrently.

4

Multiple independent simulations can run concurrently.

Head Node

IPS Framework

4

Simulation B

Simulation A

Comp 2 Comp 3 Driver Comp 2 Comp 3 Driver

MPI task MPI task

Batch Allocation — compute nodes

<AK RIDGE
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IPS : Nested Workflows

To enable workflow re-use

e Embed (one or more) “sub-workflow” into top-level master
workflow.

e Sub-workflows execute in a separate context, bridged to the
parent simulation via a bridge component.

e No limit on the Framework
number of nesti ng Framework Services
levels. i 1
Component Component e — -
e Entire hierarchy Physics App. Physics App. i e
; State Adapte State Adapter L tosmsee |
e.xecutes using a State Adapter
single resource !
allocation, Plasma State

mediated via the
IPS task and resource managers. % OAK RIDGE



IPS : Embedded optimizer

IPS-DAKOTA
ip:_ﬂ.:.KDJA
e DAKOTA toolkit [ aw DAKOTA
from SNL
er DAKOTA Bridge
o Toolkit for design < ' Everi Sarcice T T B
——, L Y L Y
Optlmlzatlon, parameter Simy sim, iy ‘EiITI"
_ . slelslelolel L 1 XL Jotelell L 1L L J=tele] L L1 =lele] T 1 1
estimation, UQ, computs |0 0 S @B OO ::::ESSEHEEESEH:
— ) - 00eQCOC|000RCO0000e 0000000
sensitivity analysis, ..

® |PS-DAKOTA integration

o Single IPS framework instance

o Manage many, dynamically created DAKOTA (coupled) simulations.

® ATOM use cases, so far these are simple parameter scans ...

o Core-pedestal coupling (IPS-EPED).

O TGLF ITER calibration (IPS-GYRO). % OAK RIDGE
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IPS : Web Monitor

Track simulation progress online

&« > C # [ swim.gat.com/display/

Ao WBER A G

Center for Simulation of
RF Wave Interactions with
Magnetohydrodynamics

Monitor

Guest
NEW! pun Statistics | About | Login

Advanced Search

Search:

Last Time- Wall »
RunID Rate Purge Status User : Update Code stamp Time Comments
| Sort i ‘]
& - " 2015-01- y 3
0 31615 - = o diem 26 Framework 4 4906.55 Simulation Ended
14:54:16
St | T, 2015-01-
- . 1 =
L C f [ swim.gat.com/media/plot/all.php?run_id=31615 adyl ~ w @B P EE?I % =
o
0 31613 -
Center for Simulation of
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. ~ H
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- =
i Missing n_H_0, n_H_ave, n_H_rho, n_He4_0, n_Hed_ave, n_He4_rho, power_EC, power_LH, Pe_LH_total, Pi_LH_total, I_LH_total, nmin_icrf_rho, Eperp_i rho, Epll_mini_rho, Pe_LH_dens_rho, Pi_LH_dens_rho, J_LH_rho, |_BS_rho, Pe_OH_rho, |_OH_rho,
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Pedestal
(IPS-EPED)

Core-Pedestal-Edge Coupling

Validate (with sources) modular
core transport solver
[FASTRAN vs TSC].

Couple core region to pedestal
[TGYRO + EPED, FASTRAN + EPED].

Validate (with fluid neutrals to
start) edge transport solver
[C2 vs SOLPS-ITER].

Couple edge solver to pedestal
[C2 + EPED].

Couple edge + pedestal + core

[FASTRAN + EPED + C2].
¥ OAK RIDGE
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3000s simulation = 135 k CPU hours

Core Plasma 1,Uxmﬁ§ .......................................... T ;
FASTRAN vs TSC Benchmarking. ) :

e Benchmarking monolithic
and multi-code component
simulations is non-trivial.

Current Density [Mmel

1_01105: ................................................. :

e Initial benchmarking of TSC
with FASTRAN was plagued
with difficulties in matching
input settings, input profiles,
binary differences, etc.

Current Density [Mmg]

'::1;:)-. 0.2 ' 0.4 ;3.5 2 0.8 11.0
”
® An IPS-TSC workflow has been constructed to use exactly the
same source components (binaries, inputs, profiles, etc).

e The benchmarking should be as simple as running TSC to
steady-state, switching a couple of lines in the IPS config file,
then letting FASTRAN take over - work in progress.  0ak Rice
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IPS-FASTRAN

An IPS based modular core transport solver

All component codes are IPS components that communicate via
the plasma-state file.

, IPS-FASTRAN

GENRAY : EC heating
& current drive [ Plasma State }
TORIC : IC heating v y § !
& current drive EASTRAN EFIT NUBEAM
NUBEAM : NBI heating A o }

: GATO TORAY
TSC models entire e ¢
plasma startup & e DCON
evolution. GENRAY
FASTRAN iterates on ; Y ¢ Y
last TSC solution [ Driver: Iteration to d/dt =0

-National Laboratory



Pedestal
IPS-EPED

® EPED [Snyder et al.*] is a composite
component that has been upgraded to a
modular IPS-EPED workflow

o Model equilibrium component: TOQ
o Kinetic Ballooning component: BALOO

o Peeling Ballooning component: ELITE

® |PS-EPED runsin parallel ...
480 TOQ + 400 BALOO + 5*80 ELITE runs

Exp (kPa)

o Now fast enough for time dependent
simulation.

O IPS-EPED runs in 2 mins using 700 CPUs.

e Verified successfully against
original idl-EPED.

P.B. Snyder et al 2011 Nucl. Fusion 51 103016 doi:10.1088/0029-5515/51/10/103016

118719, 3750

102

Growth rate

0 20 40 60 80 100

T, pea(min,maz) =(603,2969)
30
P_E1/ptotped = 1.05 +/- 0.23
25+
L
20} e o
L]
e
[ ]
12 o .'
®
10+ [ ]
5L
0 1 1 I 1
0 5 10 15 20 25

EPED (kPa)

30 concurrent runs on 120 cores

each for 1.5 wall % OAK RIDGE
clock hours. -National Laboratory
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http://dx.doi.org/10.1088/0029-5515/51/10/103016

IPS-EPED

A nested IPS workflow EPED State
30 $ $ $
TOQ ELITE BALOO
Fit

20+

10+

! { {

Driver: Root finding of growth rate > 1

|

10 20 30 DAKOTA: Parametric scan
P . (kP), EPED

Parametric fit to 500 EPED results - required 1000 CPUs for
24 wallclock hours.

Ultimately a many parameter scan / fit will be performed to
create a reduced model for non-HPC application. g0k Rince

tional Laboratory

15



Core Plasma + Pedestal + Edge

Future plans

® Presently benchmarking C-2 with SOLPS-ITER (for fluid neutrals only).

e Ultimately iterate edge and core fluid transport solvers to
convergence with EPED. Iteration scheme unclear as yet.

® (-2 used as 2-D SOL transport solver :

C-2

o A 2-D multi-fluid model extending the

previous formulations of 1-D core
and 2-D edge / SOL transports:
valid not only in the collisional EPED

edge / SOL regions but also in
the high temperature core region.

o Solve plasma continuity, parallel

momentum balance, electron / ion FASTRAN
energy and add current continuity. DAK RIDGE

- National Laboratory
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Parallelization over time |
IPS-PARAREAL |

06

® Requires ... \»\(\
I g

o Accurate (fine) solver F(x, t) 1

2.0 2.3

=
wn
-
=
—

k=1

du _ du
Z—/iuzsm(Sm)an’M Z_/lu:OEGn,AT

o Fast (coarse) solver G(x, t)

o Convergence criterion for solution x

® Break time domain into a large X
number of chunks, NAT.

® Run fine solver in parallel using
coarse solution as starting point
for each time chunk.

1.0 15 20 s

e Parareal algorithm - iteration - k=3
scheme connecting coarse and fine solutions, guaranteed

convergence in N iterations, but maybe much faster.
%I(\IJHAKRIDGE
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Recalibration of TGLF for ITER

IPS-GYRO & TGYRO

® TGLF is a reduced model of
turbulent transport used within
transport solvers like FASTRAN,
TGYRO, etc. It is based on many
HPC runs of the GYRO code (a
gyro-kinetic continuum code).

For use in ITER scenario
development, a new set of
GYRO runs was completed to
expand TGLF to the ITER regime.

Here we show 72 GYRO runs
launched via IPS-DAKOTA
requiring 185 k CPU hours.

Electron Particle Flux

(@)

Electron Energy Flux

14
12

(a) |

5 R BT
: B
w y % 8f.
[T)
S . o
= . 6| .
f;
K 2o -
.4 Biess s o
4 3 2 -1 0 1 0 2 4 6 8 10 12 14
GYRO GYRO
Deuterium Energy Flux 2 Tritium Energy Flux
20
(c) (d)
15 15
L. L.
s 10 10
5 oA 5 %
be SN TR
et . et Prre
0 Q. 0 {‘c.
0 5 10 15 20 0 5 10 15 20

GYRO

GYRO

Scatter plot of 72 IPS-GYRO runs comparing
TGLF and GYRO fluxes. The spread in

electron energy flux was addressed by adding
a small amount of collisions to subsequent

cases.
¥ OAK RIDGE
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Recalibration of TGLF for ITER
IPS-GYRO & TGYRO

Preliminary result : The inclusion of zonal-flow physics required in
the ITER regime to TGLF may significantly affect the fusion power.

30

— X7 = 0.0
251 —  agzrp=0.04

2.0 01 0.2 03 04 05 06 07 08 0.9 3.0 01 02 03 04 05 06 07 08 0.9
r/a r/a

Ultimately the TGLF calibration runs of GYRO are likely to become

an OMFit workflow to further automate this process. % OAK RIDGE
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Usability is Paramount
OMFit to drive the IPS

® Setting up an integrated simulation for fusion scenario
development is at present a non-trivial task prone to human
error in the myriad of parameters, files, inputs, outputs, etc.

e Work towards

Eile Edit Plot Help

OMFIT[1PSworkflow I INPUTS Il'instate I INSTATE I TE"
. . JB rowser : [ orkfow 1T’ S'Il'instate'][ ITE] . C ininian dho e ‘C[ G
e l I l p a IZa IO n O View WVrew ]S atc \1 Command Bo 1 criptsRul | Main Settingw Nute} Termine Namesnace: [OMET
a1 OMFIT Content 1 ] Figure 1
. . I
simulation ouck i
— instate FILE: instate (13.0kB) 30 — OMFIT['IPSworkflow']['INPUTS']["instate]['INSTATE']['TE'] ori
MSTATE ® @ OMFIT['IPSworkflow']['INPUTS']['instate']['INSTATE']['TE']
. . . s i
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° ° ° Ro s Setup entry 20
continuing to ultimately e e i,
AMINOR 1.85353 Delete entry
KAPPA 1.91506 Duplicate entry -
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Z_ION [ all: 1.00E-+ pg pt y as ASCIL. 10
A_ION [ min: 2.00
oN [ all: 5.00E- Qui kpl t
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Copy entry location s | =
ro e I . L E min: 7.87 888 opy entry location from root J ‘QﬂJ AE
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7] O paste entry (via memory copy)
El Paste entry (via Expressicn)

Show: [ descriptions [ hidden [ types rofect saved as: Ju/meneghini/OMFITdata/pr

:_;,OAK RIDGE
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