Elevating zero-dimensional predictions of tokamak plasmas to self-consistent theory-based simulations

by Tim Slendebroek¹

with

J. McClenaghan², O. Meneghini² B.C. Lyons², S.P. Smith², J. Candy²

Oak Ridge Associated Universities
General Atomics

Presented at the 63nd Annual Meeting of the APS Division of Plasma Physics Pittsburgh PA

November 11, 2021

• 0D engineering parameters to a self-consistent solution

- Validation on large database spanning multiple tokamaks
- Comparing H98y2 scaling law to simulation results
- Evaluating the relative importance of pedestal and core on confinement

Accurate calculation of confinement is critical for future device design

• Fusion power scales with the energy confinement time

$$\tau_{e,th} = \frac{W_{th}}{P_{loss} - dW_{th}/dt} [s]$$

- Scaling laws used for prediction of $\tau_{e,h98,y2}$
 - Based on linear regression of present tokamak experiments
- Limitation of energy confinement scaling
 - Not based on physics and differs by operation regime
 - Extrapolation is not recommended
- First principle modeling to predict confinement time

 $\tau_{e\,h98,y2} = 0.0562 I_p^{0.93} B_0^{0.15} P_{heat}^{-0.69} \kappa^{0.78}$ $M_{eff}^{0.19} (10n_e)^{0.41} A^{-.58} R^{1.97}$

Transforming a zero-dimensional tokamak description to a starting point for theory models

STEP Workflow to obtain self-consistent solution (Transport and Pedestal)

STEP Workflow to obtain self-consistent solution (Current evolution)

STEP Workflow to obtain self-consistent solution (Equilibrium)

STEP Workflow to obtain self-consistent solution (final)

Predictive workflow validation on ITPA database

Validated on H-mode discharges from ITPA DB

- Filter
 - $\kappa < 1.3$ (EPED-nn valid domain)
 - Triangularity available
 - Keep only Deuterium plasmas
- ~500 discharges from 7 different tokamaks
- Carbon impurity plasmas
 - exception of CMOD (Mo treated as Ne)
- 3 orders of magnitude in energy confinement time
- H98,y2 scaling law is based on this dataset

Predictive workflow successfully validated on ITPA DB5 confinement database

Validated on H-mode discharges from ITPA DB

- Mean <u>relative</u> error <u>STEP</u> 18% (including outliers)
- For comparison Scaling law 22% mean relative error
- Outliers ELM III discharges (COMPASS, TCV)

Predictive workflow successfully validated on ITPA DB5 confinement database

Validated on H-mode discharges from ITPA DB

- Mean <u>relative</u> error <u>STEP</u> 18% (including outliers)
- For comparison Scaling law 22% mean relative error
- Outliers ELM III discharges (COMPASS, TCV)

STEP workflow shows good agreement with the scaling law on the ITER-h98, y2 db

- Weighted Linear Regression (WLS) of the STEP results and the whole database
- Radar plot displays power law exponents
- STEP reproduces the scaling law with less data

$$\tau_{e \text{ h98y2}} \propto I_p^{0.93} B_0^{0.15} P_{loss}^{-0.69} \kappa^{0.78}$$
$$n_e^{0.41} A^{-0.52} R^{1.97}$$

$$\tau_{e \text{ STEP}} \propto I_p^{1.11} B_0^{0.26} P_{heat}^{-0.82} \kappa^{0.83} \\ n_e^{0.3} A^{-0.8} R^{1.811}$$

• STEP simulations capture the physics of the pedestal (EPED) and core transport (TGYRO)

Comparing the pedestal and core contribution to the thermal stored energy

Evaluating the relative importance of pedestal vs core on confinement

Pedestal and core contribution to the stored energy

• Pedestal contribution is large for conventional H-mode

Limitation of scaling laws is that they are valid only near operation point

- Low density pedestal is peeling limited
- High density is ballooning limited
- Scaling laws miss this type of physical bifurcation
- Scaling laws have difficulty in finding ne dependence

STEP provides a framework for testing coupling of core-edge models in different regimes

• EPED is a good model for conventional type-I ELMy H-mode regimes

- Unmitigated ELM type-I is troubling for reactor sized devices
- Edge models for other regimes are still subject to active investigation:
 - L-mode
 - Negative Triangularity
 - RMP-suppressed plasmas
 - QH-mode
 - Grassy ELM regime

Conclusion and future work

- New STEP workflow that predicts energy confinement time of 0D engineering parameters
- Validated on ~500 plasma discharges across 7 tokamak experiments
- Edge (pedestal) contribution is key for conventional H-mode plasmas
- Coupling of edge models for different regimes is an ongoing investigation

