The Advanced Tokamak Modeling Environment (AToM) for Fusion Plasmas

by **J.** Candy¹ on behalf of the AToM team²

¹General Atomics, San Diego, CA ²See presentation

Presented at the 2018 SciDAC-4 PI Meeting Rockville, MD 23-24 July 2018

AToM Modeling Scope and Vision

Present-day tokamaksUpcoming burning plasmaFuture reactor designDIII-DITERDEMO

AToM (2017-2022) Research Thrusts

- AToM⁰ was a **3-year SciDAC-3 project** (2014-2017)
- AToM is a new **5-year SciDAC-4 project** (2017-2022)
- The scope of AToM is broad, with six research thrusts

AToM (2017-2022) Research Thrusts

- AToM⁰ was a **3-year SciDAC-3 project** (2014-2017)
- AToM is a new **5-year SciDAC-4 project** (2017-2022)
- The scope of AToM is broad, with six research thrusts

scidac.github.io/atom/

AToM (2017-2022) Research Thrusts

- AToM⁰ was a **3-year SciDAC-3 project** (2014-2017)
- AToM is a new **5-year SciDAC-4 project** (2017-2022)
- The scope of AToM is broad, with six research thrusts

scidac.github.io/atom/

- 1 AToM environment, performance and packaging
- 2 Physics component integration
- 3 Validation and uncertainty quantification
- ④ Physics and scenario exploration
- **5** Data and metadata management
- 6 Liaisons to SciDAC partnerships

Institutional Principal Investigators (FES)

1	
Jeff Candy	General Atomics
Mikhail Dorf	Lawrence Livermore National Laboratory
David Green	Oak Ridge National Laboratory
Chris Holland	University of California, San Diego
Charles Kessel	Princeton Plasma Physics Laboratory

Institutional Principal Investigators (ASCR)David BernholdtOak Ridge National LaboratoryMilo DorrLawrence Livermore National LaboratoryDavid SchisselGeneral Atomics

AToM Team

Funded collaborators (subcontractors in green) O. Meneghini, S. Smith, P. Snyder, D. Eldon, E. Belli, M. Kostuk GA W. Elwasif, M. Cianciosa, J.M. Park, G. Fann, K. Law, D. Batchelor ORNL N. Howard MIT D. Orlov UCSD **J. Sachdev** PPPL. M. Umansky LLNL. P. Bonoli MIT Y. Chen UC Boulder Kalling Software **R. Kalling** A. Pankin Tech-X

Candy/SciDAC-PI/July 2018

1 Access to experimental data

- 1 Access to experimental data
- 2 Outreach (liaisons) to other SciDACs

- 1 Access to experimental data
- 2 Outreach (liaisons) to other SciDACs
- **3** Verification and validation, UQ, machine learning

- 1 Access to experimental data
- 2 Outreach (liaisons) to other SciDACs
- Verification and validation, UQ, machine learning
- ④ Support HPC components

- 1 Access to experimental data
- 2 Outreach (liaisons) to other SciDACs
- Verification and validation, UQ, machine learning
- ④ Support HPC components
- **5** Framework provides glue

Adapted from Fig. 24 of Report of the Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences (June 2-4, 2015)

Tokamak physics spans multiple space/timescales Core-edge-SOL (CESOL) region coupling

Fidelity Hierarchy (Pyramid)

Range of models all the way up to leadership codes

Strive for true WDM capability Core-edge-SOL (CESOL) region coupling

- Iterative solution procedure to match boundary conditions between regions
- 15 components (equilibrium, transport, heating) coupled
- Please visit posters by Park and Meneghini

Candy/SciDAC-PI/July 2018

AToM Supports two core-edge integrated workflows OMFIT-TGYRO and IPS-FASTRAN

- **OMFIT-based** core-edge (FAST) workflow:
 - Workflow manager with flexible tree-based data handling/exchange
 - Can use NN-accelerated models for EPED/NEO/TGLF
 - Transport solver based on TGYRO+TGLF

AToM Supports two core-edge integrated workflows OMFIT-TGYRO and IPS-FASTRAN

- **OMFIT-based** core-edge (FAST) workflow:
 - Workflow manager with flexible tree-based data handling/exchange
 - Can use NN-accelerated models for EPED/NEO/TGLF
 - Transport solver based on TGYRO+TGLF
- **IPS-based** core-edge-SOL (HPC) workflow:
 - Framework/component architecture using existing codes
 - File-based communication (plasma state)
 - Multi-level (HPC) parallelism
 - Transport solver based on FASTRAN+TGLF

- **OMFIT-based** core-edge (FAST) workflow:
 - Workflow manager with flexible tree-based data handling/exchange
 - Can use NN-accelerated models for EPED/NEO/TGLF
 - Transport solver based on TGYRO+TGLF
- **IPS-based** core-edge-SOL (HPC) workflow:
 - Framework/component architecture using existing codes
 - File-based communication (plasma state)
 - Multi-level (HPC) parallelism
 - Transport solver based on FASTRAN+TGLF

72 users in NERSC atom repository

AToM Supports two core-edge integrated workflows (1) OMFIT-TGYRO

AToM Supports two core-edge integrated workflows (2) IPS-FASTRAN

Candy/SciDAC-PI/July 2018

AToM Supports two core-edge integrated workflows (2) IPS-FASTRAN: DIII-D high- β_N discharge

- Manage execution of 15 component codes FASTRAN+TGLF+NCLASS+EPED(ELITE+TOQ)+ NUBEAM+TORAY+EFIT+C2+GTNEUT+CARRE+ C2MESH+CHEASE+DCON+PEST3
- Iterative coupling of core, edge, SOL
 - AToM CESOL workflow
- Self-consistent heating and current drive
 - NUBEAM, TORAY, GENRAY
- Theory-based except for *D*/χ in SOL, *Z*_{eff} and rotation at pedestal top.

AToM Supports two core-edge integrated workflows (2) IPS-FASTRAN: DIII-D high- β_N discharge

- Manage execution of 15 component codes FASTRAN+TGLF+NCLASS+EPED(ELITE+TOQ)+ NUBEAM+TORAY+EFIT+C2+GTNEUT+CARRE+ C2MESH+CHEASE+DCON+PEST3
- Iterative coupling of core, edge, SOL
 - AToM CESOL workflow
- Self-consistent heating and current drive
 - NUBEAM, TORAY, GENRAY
- **Theory-based** except for D/χ in SOL, Z_{eff} and rotation at pedestal top.
- Accuracy highly dependent on TGLF and EPED

Application: Present day tokamaks DIII-D (San Diego)

Core-edge impurity profile prediction (OMFIT-based)

Candy/SciDAC-PI/July 2018

Upcoming burning plasma ITER (Provence, France)

ITER steady-state hybrid scenario modeling (IPS-based)

Future reactor design DEMO

C-AT DEMO reactor modeling (IPS-based)

Candy/SciDAC-PI/July 2018

Create EPED1-NN neural net from EPED1 model

- 10 inputs \rightarrow 12 outputs
- normal H mode solution
- Super-H mode solution
- EPED1-NN tightly coupled in TGYRO

- Database of **20K EPED1 runs** (2M CPU hours)
- DIII-D(3K), KSTAR(700), JET(200), ITER(15K), CFETR (1.2K)

Candy/SciDAC-PI/July 2018

Create TGLF-NN neural net from TGLF reduced model

- 23 inputs \rightarrow 4 outputs
- Each dataset has 500K cases from 2300 multi-machine discharges
- Trained with TENSORFLOW
- Must be retrained as TGLF model is updated
- TGLF itself derived from HPC CGYRO simulation

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)

- Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
- Determines quality of profile prediction

- Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
- Determines quality of profile prediction
- TGLF is the heart of AToM profile-prediction capability
 - linear gyro-Landau-fluid eigenvalue solver
 - coupled with sophisticated saturation rule
 - evaluate quasilinear fluxes over range $0.1 < k_{\theta} \rho_i < 24$

- Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
- Determines quality of profile prediction
- TGLF is the heart of AToM profile-prediction capability
 - linear gyro-Landau-fluid eigenvalue solver
 - coupled with sophisticated saturation rule
 - evaluate quasilinear fluxes over range $0.1 < k_{\theta} \rho_i < 24$
- Saturated potential intensity
 - derived from a database of nonlinear GYRO simulations
 - database resolves only long-wavelength turbulence: $k_{\theta}\rho_i < 1$

- Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
- Determines quality of profile prediction
- TGLF is the heart of AToM profile-prediction capability
 - linear gyro-Landau-fluid eigenvalue solver
 - coupled with sophisticated saturation rule
 - evaluate quasilinear fluxes over range $0.1 < k_{\theta} \rho_i < 24$
- Saturated potential intensity
 - derived from a database of nonlinear GYRO simulations
 - database resolves only long-wavelength turbulence: $k_{\theta}\rho_i < 1$
- 10 million to one billion times faster than nonlinear gyrokinetics

TGLF Ongoing calibration with CGYRO leadership simulations

- Theory-based approach must be calibrated with nonlinear simulations
- Predictions validated with ITPA database
- Discrepanies: L-mode edge, EM saturation
- CGYRO multiscale simulations needed

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order conservative upwind in θ

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order **conservative upwind** in θ
- Extended physics for edge plasma
 - Sugama collision operator (numerically self-adjoint)
 - Sonic rotation including modified Grad-Shafranov

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order **conservative upwind** in θ
- Extended physics for edge plasma
 - Sugama collision operator (numerically self-adjoint)
 - Sonic rotation including modified Grad-Shafranov
- Arbitrary wavelength formulation targets multiscale regime

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order **conservative upwind** in θ
- Extended physics for edge plasma
 - Sugama collision operator (numerically self-adjoint)
 - Sonic rotation including modified Grad-Shafranov
- Arbitrary wavelength formulation targets multiscale regime
- Wavenumber advection scheme (profile shear/nonlocality)

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order **conservative upwind** in θ
- Extended physics for edge plasma
 - Sugama collision operator (numerically self-adjoint)
 - Sonic rotation including modified Grad-Shafranov
- Arbitrary wavelength formulation targets multiscale regime
- Wavenumber advection scheme (profile shear/nonlocality)
- Target petascale and exascale architectures (GPU/multicore)
 - cuFFT/FFTW
 - GPUDirect MPI on compatible systems
 - All kernels hybrid OpenACC/OpenMP

- New coordinates, discretization, array distribution
 - **Pseudospectral** velocity space (ξ, v)
 - Fluid limit recovered as $v_e \rightarrow \infty$ (Hallatschek)
 - 5th-order conservative upwind in θ
- Extended physics for edge plasma
 - Sugama collision operator (numerically self-adjoint)
 - Sonic rotation including modified Grad-Shafranov
- Arbitrary wavelength formulation targets multiscale regime
- Wavenumber advection scheme (profile shear/nonlocality)
- Target petascale and exascale architectures (GPU/multicore)
 - cuFFT/FFTW
 - GPUDirect MPI on compatible systems
 - All kernels hybrid OpenACC/OpenMP
- Generate future database for TGLF edge calibration

Carefully optimized for leadership systems

	Cori	Stampede2	Skylake	Titan	Piz Daint
Architecture	CPU	CPU	CPU	CPU/GPU	CPU/GPU
CPU Model	Xeon Phi 7250	Xeon Phi 7250	Xeon Plat 8160	Opteron 6274	Xeon ES-2690 v3
GPU Model				Tesla K20X 6GB	Tesla P100 16GB
Threads/node	272 (128 used)	272 (128 used)	96	16/2688	12/3584
TFLOP/node	3.0	3.0	3.5	1.5(0.2+1.3)	4.5(0.5+4.0)
Nodes	9668	4200	1736	18688	5320

Candy/SciDAC-PI/July 2018

Measuring Performance versus advertised peak

Kernel timning (left) and strong scaling (right)

Equal 1.6 PFLOP

Increasing fraction of peak

- lower is better (closer to advertised)
- Xeon (Stampede2 Skylake) performing well

ATIM

Candy/SciDAC-PI/July 2018

Excellent OpenMP performance

- Results for NERSC Cori KNL (use 128 threads per node)
- Almost **perfect tradeoff** between MPI tasks and OpenMP threads

GPUDirect MPI Recently Implemented

General Atomics Power9+V100 nodes

CGYRO Kernels - Plasma Core Simulation

On GA owned 2x Power9 + V100 node

Arbitrary-wavelength formulation for multiscale Experimental DIII-D ITER-baseline discharge reproduced

Candy/SciDAC-PI/July 2018

Arbitrary-wavelength formulation for multiscale Experimental DIII-D ITER-baseline discharge reproduced

Candy/SciDAC-PI/July 2018

COGENT: Direct Kinetic Eulerian Edge Simulation

Provide future theory-based transport fluxes in SOL

- Kinetic cross-separatrix transport computed by COGENT
- Includes 2D potential and Fokker-Planck ion-ion collisions

- Validation and scenario modeling will be organized about benchmark use cases
 - datasets describing key plasma discharges for component and workflow validation
 - effective way to benchmark models, track improvements, assess performance

Key concept for AToM interaction with other SciDACs

- Validation and scenario modeling will be organized about benchmark use cases
 - datasets describing key plasma discharges for component and workflow validation
 - effective way to benchmark models, track improvements, assess performance
- Each use case will include
 - Magnetic equilibria and profile data in accessible format
 - Repository of calculated quantities (code results)
 - Provenance documentation (shots/publications/models)

Key concept for AToM interaction with other SciDACs

- Validation and scenario modeling will be organized about benchmark use cases
 - datasets describing key plasma discharges for component and workflow validation
 - effective way to benchmark models, track improvements, assess performance
- Each use case will include
 - Magnetic equilibria and profile data in accessible format
 - Repository of calculated quantities (code results)
 - Provenance documentation (shots/publications/models)
- Candidate Use Cases
 - 1 DIII-D L-mode shortfall, ITER baseline, steady-state discharges
 - 2 Alcator C-Mod LOC/SOC plasmas, EDA H-mode toroidal field scan
 - **3** ITER inductive, hybrid, and steady-state scenarios
 - 4 ARIES ACT-1/ACT-2 reactor scenarios

Key concept for AToM interaction with other SciDACs

Compliance with the ITER IMAS data model

https://gafusion.github.io/omas

- Transfer data between components using OMAS (python)
- API stores data in format compatible with **IMAS data model**
- Use storage systems other than native IMAS

https://gafusion.github.io/omas

IMAS is a set of codes, an execution framework, a data schema, data storage infrastructure to support ITER plasma operations and research

https://gafusion.github.io/omas

IMAS is a set of codes, an execution framework, a data schema, data storage infrastructure to support ITER plasma operations and research

- We confirmed that IMAS has several functional shortcomings
 - issues with speed, stability, portability, useability

https://gafusion.github.io/omas

IMAS is a set of codes, an execution framework, a data schema, data storage infrastructure to support ITER plasma operations and research

- We confirmed that IMAS has several functional shortcomings
 - issues with speed, stability, portability, useability
- **OMAS** solution:
 - store data according to IMAS schema
 - do not use the IMAS infrastructure itself
 - facilitate data translation to/from IMAS schema
 - lightweight Python library

AToM Environment: Dependency Specification

Managing the zoo of physics codes

- Component challenge
 - deal with a **zoo of physics codes**
 - legacy/modern, different languages, compiled/interpreted, serial/HPC/leadership
- AToM Approach
 - Add new dependencies in a single location
 - Generate recipes/specs/etc and build installer packages
 - Upload packages to package manager, build images

AToM HPC Environment: Spack

AToM components installable from AToM Spack repository

- Spack manages installation of dependencies
 - list available packages

\$ spack list -t atom

- install package

\$ spack install [package]

```
- install AToM tier1 package
```

\$ spack install atom-tier1

- CONDA for local instal and distribution of pre-built environment
- **PIP/MACPORTS** provide options for Python/OSX

AToM Environment: Docker

Deploy without building \longrightarrow up and running quickly

- Single monolithic image
- Common user environment across multiple platform
- Enables users on nontarget platform to run components locally
- OMFIT runtime environment currently available as Docker image

