The Advanced Tokamak Modeling Environment (AToM) for Fusion Plasmas

Christopher Holland University of California, San Diego

on behalf of the AToM team http://scidac.github.io/atom/index.html

Presented at the 2019 SciDAC PI Meeting July 16-18, Rockville, MD

UC San Diego

AToM is 1 of 9 SciDAC-4 partnerships working to address modeling needs of US MFE program

 AToM focus is whole-device modeling (WDM): assemblies of physics components that provide a sufficiently comprehensive integrated simulation of the plasma

AToM guiding philosophy

- take a *bottoms-up*, *collaborative* approach that focuses on
- supporting, leveraging, and integrating the wide spectrum of *existing* research activities throughout the US fusion community,
- to grow and improve a WDM capability that has broad community support and buy-in.

 In practice, this means developing flexible software environment and workflows to couple existing and in-development physics components

AToM's scope and vision extends from current-day devices to future reactor facilities

- Validate existing WDM capabilities
- Identify modeling gaps
- Drive new development

- Test WDM capabilities in burning plasma conditions
- Optimize ITER operation scenarios
- Examine how to best optimize devices with varying goals and missions

AToM couples IPS and OMFIT computing frameworks and effectively exploits their synergy

Holland/SciDAC/7.17.19

AToM supports flexible workflows based on coupling of multiple physics components

Core-Edge-Scrape Off Layer prediction requires coupling 15 physics components, executed on NERSC Edison Cray XC30 machine

Practical integrated studies require hierarchy of fast, efficient, and accurate physics components

Direct simulation on LCF allows us to better understand complex multiscale dynamics

 Nonlinear gyrokinetic simulations yield highest fidelity transport predictions but require 10³ – 10⁷ core-hours to simulate small fraction of plasma volume & duration Simulated turbulent fluctuations

HPC resources need to explore plasma dynamics in new parameter regimes

- New CGYRO simulations predict microtearing modes (MTMs) drive significant transport in steady-state plasma core region
- MTMs can be qualitatively different than more commonly studied instabilities like ITG (ion temperature gradient)

MTM in high bootstrap fraction DIII-D H-mode

Optimization of CGYRO for Summit yielding 10x increase in code-performance from Titan

 Enables scope and scale of new high-fidelity simulations to improve our reduced models and thereby our practical predictive modeling capabilities

Holland/SciDAC/7.17.19

HPC + Capacity: Reactor design study using full physics models with IPS-FASTRAN

Multi-dimensional parametric scan with random sampling

Holland/SciDAC/7.17.19

- Efficient utilization of HPC
 - IPS + DAKOTA
 - Massive serial

= IPS-FASTRAN modeling with fully physics models

OMFIT STEP module supports discharge design and optimization for current and future machines

Developed workflow for coupled core-pedestal simulations with self-consistent impurity transport

- Three nested self-consistency loops
 - Core profiles + pedestal + impurities + equilibrium & sources
 - Used neural net models to speedup critical bottlenecks
 - Compatible with ITER IMAS data structures (leveraging OMAS)

Predictions for varying carbon content (0.5, 1.0, 1.5) in DIII-D shows how impurity seeding can improve pedestal

Holland/SciDAC/7.17.19

Initial ITER simulations show small dependency of Q_{fusion} on Z_{eff}: tradeoff pedestal height for core dilution

IPS-CESOL is Being Extended to Wall

Non-orthogonal/nonfield aligned grid in far-SOL region

- High-order FVM for accurate calculation of anisotropic transport
- Fully unstructured grid supporting triangular grid
- 2-D impurity transport in the entire region of tokamak
 - Plug&Play of FASTRAN(1-D) and C2(2-D) for transport in core region
 - Poloidal anisotropy of radial transport

AToM Validation and Physics Studies Coordinated Through Use Cases

- Observe that most every modeling effort eventually settles on certain sets of input parameters which provide benchmark points for regression testing and/or physics studies
 - Can be, but not necessarily, drawn from actual experiments
- Plan to organize AToM validation and scenario modeling work about uses cases- well-documented datasets describing discharges of interest for component and workflow validation
- Envision development of use cases as iterative process- start simple and grow as needed by maturity of physics and validation workflows

Example Use Case Application: Benchmarking Model Fidelity on Scaled ITER H-mode Discharges from DIII-D

Use Case Application #2: Testing Model Fidelity for Scaled ITER Startup Phase

 Newer model (SAT1) performs much better at low current, but still errors in density prediction

Holland/TTF19/3.20.19

New Project: Developing a Multi-SciDAC Use Case Physics Study

- Key physics question for fusion reactor design: how to control accumulation of metal impurities from wall in plasma core through use of RF heating actuators
- Coordinated effort between AToM, RF-SciDAC, and PSI-2 to develop practical, validated core-to-wall predictive capability of impurity response to radiofrequency (RF) heating
- Project has two components:
 - Validation of workflows like STEP, CESOL using data from Alcator C-Mod
 - **Predictions** for response in ITER baseline scenario

AToM working to deliver practical, highfidelity whole-device modeling capabilities

- Longer term goal: partnering with other SciDAC centers to integrate and improve both high-fidelity and reduced model components for:
 - RF heating & current drive
 - energetic particle transport
 - plasma edge & scrape-off layer physics
 - plasma-material interactions
 - disruptions
 - runaway electrons

- (PI: P. Bonoli)
- (PI: Z. Lin)
- (PI: C. S. Chang)
- (PI: D. Hatch)
- (PI: B. Wirth)
- (PI: S. Jardin)
- (PI: X. Tang)
- (PI: D. Brennan)

